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Abstract 

Finding a balance between effective data compression and strong security is still a major challenge 

as data processing and storage move more and more to cloud services. Conventional compression 

methods maximize storage capacity but sometimes overlook security, leaving private information 

vulnerable to attacks. This paper investigates how text compression and Fully Homomorphic 

Encryption (FHE) can be combined in safe cloud computing settings. The goal of the project is to 

provide a framework that improves data recovery methods for compressed and encrypted data in 

the cloud, as well as a novel model that achieves optimal lossless compression while upholding 

robust data security. The results show that larger files have lower compression ratios and less 

redundancy; for example, a 10 KB file compresses 50% of its size, while a 1000 KB file only 

reduces by 29%. This illustrates how redundancy-based compression loses effectiveness when 

dealing with bigger datasets. The work supports earlier findings on the computational cost of FHE 

by highlighting its large computational overhead, where encryption and decryption durations 

dramatically increase with text size. Hybrid encryption models that combine symmetric and 

asymmetric encryption may offer a better balanced approach to efficiency and security, according 

to a comparison of FHE and conventional cryptographic compression techniques. Furthermore, 

the observed drop in compression ratios from 0.6 for 1 KB files to 0.29 for 1000 KB files is 

consistent with entropy-based encoding methods such as Huffman coding and Lempel-Ziv 

compression. The paper highlights that because of its high computational cost, standalone FHE is 

still not feasible for real-time secure applications. Future research should concentrate on 

improving FHE schemes, investigating parallelized implementations, and creating hybrid 

encryption models to lessen performance constraints in secure cloud computing, even though FHE 

shows promise in situations when security considerations exceed performance issues. 
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Introduction  

Significant improvements in data access, processing, and storage have been made possible by the 

development of cloud-based computing, but it has also brought up serious issues with data security, 

privacy, and effective administration. Reliable solutions that guarantee compression, recovery, and 

confidentiality are crucial as data processing and storage move more and more to cloud services. 

Because they save money and bandwidth, dynamic data compression techniques are crucial for 

maximizing transmission and storage in cloud systems. There is a need for creative alternatives 

because existing encryption algorithms impede compression efficiency and standard compression 

techniques frequently jeopardize data security (Seth et al., 2022; Ahmad et al., 2023).  

A promising option that preserves privacy while permitting effective compression and recovery is 

homomorphic encryption, which permits calculations on encrypted data without the need for 

decryption. Although issues like computational costs and lattice-based constraints still exist, this 

method tackles the trade-off between security and compression efficiency (Begum et al., 2023; 

Munjal & Bhatia, 2022). To improve secrecy and compression efficiency in cloud environments, 

homomorphic encryption is being included into secure data compression systems. By supporting 

multi-party compute situations, this technology allows entities to collaborate securely without 

jeopardizing the confidentiality of data (Venu et al., 2022). Researchers are working to increase 

the speed and efficiency of homomorphic encryption for safe compression and recovery, which is 

also enabling real-time processing in cloud environments (Baritha et al., 2023). Building useful 

solutions for the cloud environment requires cooperation between researchers and cloud service 

providers, which promotes faith and confidence in these cutting-edge technologies (Amazon Web 

Services, 2021; Sun et al., 2020).  Despite its potential, homomorphic encryption faces practical 

challenges, such as high computational costs, which must be addressed to ensure its applicability 

in real-world cloud scenarios (Munjal & Bhatia, 2022). 

Strong security measures and user trust are crucial, as evidenced by the increasing reliance on 

cloud services for processing and storing sensitive data. Strong confidentiality guarantees are 

necessary because users entrust cloud providers with sensitive data, including financial, medical, 

and intellectual property information. One option is fully homomorphic encryption (FHE), which 

lowers latency and enhances user experience by allowing calculations on encrypted data without 

the need for decryption (Chen et al., 2023; Lin et al., 2021). Cloud providers can improve system 

security and responsiveness, especially for time-sensitive applications, by combining FHE with 

compression methods (Mukherjee & Zhang, 2020). Establishing trust and confidence in cloud 

services requires a user-centric approach to cloud security that places an emphasis on control, 

transparency, and minimal disruption to workflow (Wang et al., 2021; Lee & Choi, 2022). By 

meeting these user demands with cutting-edge encryption and compression methods, FHE 

establishes itself as a pillar for upcoming cloud-based apps, promoting a safe and user-centered 

environment. Thus this study. 
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Statement of the problem 

Finding a balance between strong security and effective data compression is a major difficulty for 

cloud computing. Conventional compression methods maximize resources but frequently overlook 

security, leaving private information vulnerable to invasions and illegal access. For example, Rizal 

(2023) pointed out that although compression enhances performance and energy economy, data is 

left unprotected when encryption is not used. Although homomorphic encryption is a viable 

solution by enabling operations on encrypted data, its uptake is constrained by a high 

computational burden that prevents scalability. Kishore and Guruprakash’s (2023) proposal for a 

secure data storage and retrieval system, which increases bandwidth usage and does not support 

operations on encrypted data, highlight the necessity for efficient solutions that combine efficiency 

and security in the compression process. Furthermore, one of the fundamental concerns in cloud 

systems is still safe data recovery. Data integrity and user confidence are at risk because current 

recovery methods frequently fall short in striking a balance between security and effectiveness. 

Kumar et al. (2021) presented a hybrid cryptographic paradigm for safe cloud storage, but it does 

not handle compression requirements and necessitates data decryption for operations. Cloud 

service companies must implement stringent security measures to safeguard customer data in light 

of growing regulatory requirements, such as GDPR compliance. These drawbacks emphasize the 

necessity of a system that incorporates safe data compression and recovery through homomorphic 

encryption in order to improve data security, adhere to legal requirements, and increase user trust 

in cloud computing services.  

Aim and objectives 

This paper aims to develop an enhanced framework for securing data compression and recovery 

for cloud computing data using homomorphic encryption.  

The specific objectives are to: 

i. Designing a novel model that can bring about optimal lossless compression efficiency 

while still maintaining robust data security in cloud environment 

ii. Developing a framework that enhances data recovery mechanisms for compressed and 

encrypted data in cloud. 

Literature review 

Cloud Computing 

According to Sunyaev (2020), cloud computing is regarded as the pinnacle of resource delivery 

and an advancement in the field of information technology. It encompasses both the hardware and 

software in data centers that supply those services as well as those that are provided online (Shafiq 

et al., 2021). Organizations find the on-demand computer resources provided by cloud computing 

services to be especially advantageous. Improved collaboration and data sharing, lower investment 

costs, business continuity, access flexibility, and quick elasticity are a few advantages that cloud 

computing services offer. Analyzing the features that consumers want from cloud computing 

services that are being provided offers another way to see the advantages of cloud computing. Key 

technological dimensions of cloud computing desires are equivalence, variety, abstraction and 

scalability and key service dimensions of cloud computing desires are efficiency, creativity and 

simplicity (Shafiq et al., 2021). Cloud providers, cloud carriers, cloud brokers, cloud auditors, and 
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cloud consumers are the primary players in the architecture of cloud computing (Choudhary & 

Singh, 2022). Hosting and making the services accessible to cloud consumers those who use the 

cloud services is the responsibility of the cloud providers. Cloud carriers carry the services from 

cloud service providers to users. According to Bohn et al. (2021), a cloud auditor is a third party 

who assesses the services of cloud providers and cloud brokers, who are individuals or 

organizations that oversee cloud services for cloud consumers. Cloud computing technology 

developed out of need, just like many other technologies.  Supporting massive data transfers 

between users, financial transactions, and millions of daily searches are just a few of the new issues 

that the Web's expansion has brought about. Adapting to those changes requires time and expertise, 

and those impacted include not only service providers and customers but also outside parties like 

the government. Many policy concerns, including those pertaining to security, privacy, and 

anonymity, are brought up by all of those changes as well as those brought about by the 

development of cloud computing technology. Many of those policies have not yet been developed 

because this is an area that is constantly changing (Varghese & Buyya, 2021).  With benefits 

including flexibility, scalability, dependability, sustainability, and cost-effectiveness, cloud 

computing has grown in importance within the tech sector (Thakur et al., 2023). Both individuals 

and businesses have taken notice of the pay-per-use fundamental of the cloud model, which allows 

them to use it to increase their profitability (Aina et al., 2024; Haris et al., 2024). Even with the 

fierce rivalry between big organizations like Google, Microsoft, and IBM, there is still a lack of 

study in the area of cloud security. Security concerns have increased since 92% of businesses now 

host at least some of their infrastructure in the cloud. Indeed, compared to 41% in 2022, 63% of 

businesses expect to host the majority, if not all, of their IT infrastructure on the cloud within the 

following 18 months (Exploding Topics, 2024). The critical need for improved security solutions 

is shown by the startling fact that 98% of firms reported having recently experienced at least one 

cloud data breach (Zhou et al., 2023).  Cloud computing has many benefits, but because of its 

complexity and dependence on common technologies, there are serious security issues. Security 

issues are made worse by the complexity of cloud computing, which includes networks, 

architecture, APIs, and hardware (Aina et al., 2023; Zhou et al., 2023). As a result, different cloud 

setups present risks for both clients and cloud providers, potentially exposing private information 

and systems (Ghobaei-Arani et al., 2021). A service-based architecture for cloud computing, the 

National Institute of Standards and Technology (NIST) have proposed comprising Infrastructure-

as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). Software, 

hardware, and network components are among the IT resources that can be shared according to 

this approach (Huang et al., 2023). 

 

Data Security in Cloud Computing 

For the majority of enterprises, data protection is a critical security concern. Before using the cloud, 

users must clearly identify the data objects that need to be protected, categorize the data according 

to how it affects security, and then establish the security policy for data protection and the 

procedures for enforcing the policy (Yang et al., 2020). For the majority of applications, data 

objects would comprise not just large amounts of data stored on cloud servers (such as user 

databases and/or file systems), but also data that is in transit between the cloud and the user or 

users, which may be sent via mobile media or the Internet (In many cases, it would be more cost-
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effective and easy to send huge volumes of data to the cloud by mobile media like archive tapes 

than transmitting over the Internet.) (Flinn, 2022). User identity data generated by the user 

management model, service audit data generated by the auditing model, service profile data used 

to characterize the service instance or instances, temporary runtime data generated by the instance 

or instances, and numerous other application data are examples of data objects (Nayyar, 2021). 

Different data kinds would have varying security implications for cloud users due to their varying 

values. For instance, user databases stored on cloud servers at rest could be essential to cloud users, 

necessitating robust security to ensure data availability, confidentiality, and integrity. User privacy 

is affected by user identity information, which may contain Personally Identifiable Information 

(PII) (Sun, 2021). As a result, user identity information should only be accessible to authorized 

users. Service audit data should not be intentionally altered since it provides evidence of 

compliance and Service Level Agreement (SLA) fulfillment.  Information from service profiles 

should be properly safeguarded since it may aid attackers in locating and identifying service 

instances. Temporary runtime data should be separated during runtime and safely removed after 

runtime since it may contain important information about the user's business (Alasmari 2022). 

Assurance of data confidentiality, integrity, and availability (CIA) is one of the fundamental 

security services for information security. Because of the inherent features of cloud computing, 

data security becomes a more complex issue (Yee & Zolkipli, 2021). Before prospective cloud 

users can safely transfer their apps or data to the cloud, a number of security services must be in 

place. These services include data confidentiality, data integrity, data availability, authentication, 

data audition, and more not all of which are required for a given application. 

 

Data compression and Cryptographic Algorithm 

A key component of digital technology is data compression, which makes it possible to reduce the 

size of data for effective processing, transmission, and storage. Data compression is becoming 

more crucial than ever due to the growth of big data, artificial intelligence, and cloud computing. 

New methods that improve compression efficiency without sacrificing data integrity have been the 

focus of advances in recent years. Cloud storage, multimedia, and secure data transmission are just 

a few of the applications that are using compression techniques including Huffman coding, 

arithmetic coding, and deep learning-based approaches (Petrenko et al., 2024). The issues brought 

on by the exponential expansion in data generation are intended to be addressed by these 

developments. The difference between lossless and lossy approaches is a major topic of data 

compression study. Because lossless compression guarantees that no data is lost during the 

compression process, it is perfect for applications where data integrity is crucial, such text 

documents or medical imaging. For lossless compression, algorithms such as Huffman coding and 

Lempel-Ziv-Welch (LZW) are frequently employed. However, multimedia items like photos, 

videos, and audio are better suited for lossy compression, which permits some data loss in order 

to get greater compression ratios. In order to balance efficiency and quality, especially in 

multimedia applications, researchers have created hybrid techniques that mix lossy and lossless 

compression, as noted by Grasso et al. (2023). 

The need for secure communications is driving a rapid evolution of cryptographic algorithms, 

especially in light of new and impending dangers like quantum computing. For many years, 
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traditional algorithms like RSA, DES, and AES have offered strong security; nevertheless, as 

computing power increases, they are now encountering difficulties. A study on hybrid 

cryptography by Kumar et al. (2024) shows how layered encryption systems can be created by 

combining traditional cryptographic methods like the Vigenère and Polybius ciphers to improve 

security. Without appreciably sacrificing performance, this hybrid approach is very helpful for 

increasing the complexity of encrypted data, which increases its resistance against attacks. In 

situations like cloud computing, where data must be accessible and safe, such advancements are 

essential. One of the biggest threats to existing cryptographic methods, particularly those that 

depend on public-key cryptography like RSA and ECC, is the emergence of quantum computing. 

According to research, quantum computers will be able to effectively crack these encryption 

systems using methods like Shor's algorithm. Creating algorithms that are impervious to quantum 

attacks is the goal of post-quantum cryptography, or PQC. Lattice-based encryption is a viable 

way to guarantee long-term security in the quantum era, according to Petrenko et al. (2021). The 

difficulty of solving lattice issues, which are computationally challenging even for quantum 

computers, is the foundation of this class of methods. Governments and companies are starting to 

standardize these techniques in anticipation of quantum attacks, and research into quantum-

resistant algorithms is gathering momentum. Homomorphic encryption (HE) enables calculations 

to be done on encrypted data without requiring its decryption. There are important ramifications 

for domains like cloud computing and data privacy from this capacity to preserve data 

confidentiality while permitting computation. According to Trivedi et al. (2024), homomorphic 

encryption is used to protect sensitive data, especially in sectors where third parties must process 

data without disclosing its contents. HE guarantees that data is secure even in the event of 

interception or intrusion by permitting actions on encrypted data. Research is still being done to 

maximize HE's efficiency, but its computational overhead continues to be a deterrent to its broad 

use (Trivedi et al., 2024). 

 

Methods 

System Model 

Figure 1 below shows the proposed system model. The suggested approach aims to bridge the 

security gap in the current system by putting in place a thorough plan that safeguards the data as 

well as the compression procedure itself. In order to accomplish this, the new system would make 

use of cutting-edge encryption methods, especially fully homomorphic encryption (FHE), which 

guarantees the confidentiality and integrity of the data as it is being compressed. Additionally, the 

new system will leverage FHE to protect the compression process itself using the Huffman 

compression technique in order to enable end-to-end encryption in the context of cloud computing. 

This entails employing FHE to encrypt the compression techniques, settings, and intermediate 

results in order to guard against manipulation or unwanted access during the compression process. 

By encrypting the compression process with the same encryption techniques that protect the data, 

the system maintains a consistent level of security throughout the whole data lifecycle, from 

storage to transmission and processing. 

http://www.iiardjournals.org/
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Figure 1 Proposed System Model 

 

Homomorphic Encryption function  

The general outline of the homomorphic function that will serve as the foundation for this work's 

encryption component is depicted in figure 2. Based on the difficulties of learning with errors 

(LWE), a pair of keys a public key for encryption and a private key for decryption are created in 

the above figure 2. Before being sent to a server or other external system, encryption converts 

plaintext data into ciphertext using the public key. A request for a computation on the encrypted 

data is sent by the client to the server. The client obtains the outcome after the computation is 

completed on the encrypted data (because of the FHE property, which permits operations on 

ciphertexts without decryption). The client recovers the desired plaintext result by using their 

private key during the decryption procedure. When ciphertexts are set to storage for later 

operations or retrieved from storage for continuous calculation, data may be safely kept during this 

process. Lastly, the secrecy of the original data is maintained throughout the process by computing 

a function on the encrypted data (such as addition or multiplication) directly on the ciphertext. The 

Brakerski-Vaikuntanathan (BV) fully encryption scheme (2018), one of the various homomorphic 

encryption schemes created by various developers, is used for this study with minor adjustments 

to the noise management strategy, which employs sophisticated techniques for noise reduction and 

control to make sure that noise does not increase during computations as rapidly as it does in the 

BV scheme. To increase computational performance, optimize modular arithmetic and matrix 

computations. To process several data pieces in a single ciphertext, use batching techniques. 

Additionally, to maintain strong security assurances, make sure that parameter selections and noise 

distributions are current with current cryptography research. 
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International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.2 2025 www.iiardjournals.org  

 

 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 113 

 
Figure 2: Homomorphic Encryption function 

The Brakerski-Fan-Vercauteren (BFV) scheme is the foundation of the Fully Homomorphic 

Encryption (FHE) scheme, a lattice-based cryptographic technique that enables calculations on 

encrypted data. Utilizing methods from lattice theory, the BFV scheme allows for homomorphic 

operations over polynomial rings. A high-level mathematical explanation of the BFV scheme can 

be found below. 

Key Concepts and Notation: 

1. Ring Structure: 

o Let R = Z[x] / (xn+1) be the polynomial ring, where n is a power of 2. 

o Let Rq =R / qR be the ring of polynomials with coefficients modulo q, where q is a 

large integer modulus. 

2. Error Distribution: 

o Let χ be an error distribution (e.g., a discrete Gaussian distribution) over R used to 

sample small noise polynomials. 

3. Plaintext Space: 

o The plaintext space is typically Rt=R/tR, where t is a small integer modulus (e.g., 

t=2 for binary plaintexts). 

4. Ciphertext Space: 

o A ciphertext is a pair of polynomials (c0,c1)∈R2
q. 

BFV Scheme Equations: 

1. Key Generation: 

o Secret Key (sk): Sample s←χ from the error distribution. 

o Public Key (pk): Sample a←Rq uniformly and e←χ. Compute: 

Pk =(p0,p1)=(−(a⋅s+e), a)   (1) 

o Evaluation Key (evk): Used for relinearization (optional for basic BFV). 

2. Encryption: 

o To encrypt a plaintext m∈Rt: 

▪ Sample u←χ and e1, e2←χ. 

▪ Compute: 

c0 = p0⋅u + e1 + Δ⋅m (mod q)  (2) 

c1 = p1⋅u + e2 (mod q)   (3) 

http://www.iiardjournals.org/
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where Δ=[
𝑞

𝑡
] scales the plaintext to the ciphertext space. 

3. Decryption: 

o To decrypt a ciphertext (c0,c1): 

▪ Compute: 

m′=c0+c1⋅ s (mod q)   (4) 

▪ Recover the plaintext: 

𝑀 = [
𝑡.𝑚′

𝑞
]  (mod q)   (5) 

4. Homomorphic Addition: 

o Given two ciphertexts  ( c0, c1 )and ( d0, d1 ), their sum is: 

(c0 + d0, c1 + d1) (mod q)   (6) 

5. Homomorphic Multiplication: 

o Given two ciphertexts (c0,c1) and (d0,d1), their product involves: 

▪ Compute: 

c0′ = c0 ⋅ d0 (mod q)   (7) 

c1′ = c0 ⋅ d1 + c1 ⋅ d0 (mod q)  (8) 

c2′ =  c1 ⋅ d1 (mod q)   (9) 

▪ Relinearize ( c0′, c1′, c2′ )  to reduce the ciphertext back to two components 

using the evaluation key. 

Huffman Algorithm  

One approach for lossless data compression is Huffman coding. The concept is to give input 

characters variable-length codes, the lengths of which are determined by the frequencies of the 

corresponding characters. Prefix codes are variable-length codes that are assigned to input 

characters. This means that the codes (bit sequences) are assigned so that the code assigned to one 

character does not prefix any other character. Huffman Coding ensures that the produced bitstream 

is decoded without ambiguity in this way. Huffman Coding consists of two key components: i. 

Create a Huffman Tree using input characters. ii. Go through the Huffman Tree and give characters 

codes. 

Mathematical Expression of Huffman Coding 

The expected length LLL of the encoded message is given by: 

L = ∑ 𝑃(𝑖) .  𝑃(𝑖)  𝑛
𝑖=1    (10) 

n = number of unique symbols in the input data, 

P(i)= probability (or frequency) of symbol i, 

L(i)= length of the Huffman code assigned to symbol i 

 

𝐻 = − ∑ P(𝑖) log2 P(𝑖)   
𝑛

𝑖=1
   (11)   

The efficiency of Huffman coding can be measured by comparing L with H: 

Efficiency=
𝐻

𝐿
.     (12) 

Huffman coding provides near-optimal prefix-free codes, minimizing L while ensuring lossless 

compression. 

http://www.iiardjournals.org/
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Huffman Coding Algorithm (Mathematical Form) 

1. Count Frequencies: 

f(si) = frequency of symbol si in input data. 

2. Build Priority Queue: 

Q = { ( s1 , f (s1) ) , ( s2 , f (s2 ) ) , … , (sn, f (sn ) ) } 

3. Construct Huffman Tree: 

While ∣Q∣>1: 

( Si , f(si) ) = min (Q) ; (Si, f (sj) = min(Q) 

N = (si, sj ), f(N) =(si) = f(sj) 

Q = Q U {N} 

4. Generate Codes: 

Assign binary code C(si) for each symbol by traversing the tree. 

5. Encode Data: 

D′ = { C (d1), C(d2) ,…, C (dm) } 

6. Store Tree for Decoding: 

Store the code table {(si, C(si) ) }. 

 

Results 

Experimental Result 

The result obtained from the implementation of the system is presented in the figures below 

 

 
Figure 3: Compression and Encryption User interface 

http://www.iiardjournals.org/
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Figure 4: Compression text using Huffman 

 

 

 
Figure 5 Encrypted text using Huffman 
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Figure 6: User interface showing Decrypt and decompress 

 

 

 
Figure 7: Decrypt and decompress text 

 

For the purpose of executing text compression, encryption, decryption, and decompression, the 

system interfaces are made to be smooth and easy to use. The Compression and Encryption 

Interface, shown in Figure 3, allows users to upload a.txt file or enter text. This interface includes 

a "Compress and Encrypt" button to start the process, a huge text field for human input, and a file 

upload option. Following text processing, the system shows the compressed text in Figure 4, which 

also provides options to copy the text or continue with encryption, as well as a read-only text space 

for reading the compressed result. The Encrypted Text Interface, depicted in Figure 5, enables 

http://www.iiardjournals.org/
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users to copy the encrypted data or proceed to the decryption stage by displaying the encrypted 

text in a comparable read-only format. The Decryption and Decompression Interface, shown in 

Figure 6, allows users to paste encrypted text for decryption and decompression. A text field for 

input, a "Decrypt and Decompress" button, and a section to show the recovered text are all included 

in this interface. The original text following decryption and decompression is shown in Figure 7, 

the Recovered Text Interface, along with performance indicators like compression ratio, 

encryption time, and compression time. To further illustrate how processing times change with 

text size, a performance graph is included. When combined, these interfaces guarantee a seamless 

and user-friendly process that lets users effectively compress, encrypt, decrypt, and recover text 

while learning more about the system's functionality. 

 

Performance Analysis  

Compression Performance 

 
Figure 8 Compression time Vs Text Size 
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Figure 9: Decompression time Vs Text Size 

 
Figure 10: original text Vs Text Size 

http://www.iiardjournals.org/


 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.2 2025 www.iiardjournals.org  

 

 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 120 

 
Figure 11: Compression ratio Vs Text Size 

 
Figure 12: Compression ratio Vs Text Size 

 Encryption Performance 

Below are the encryption performance graphs based on text size. 
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Figure 13: Encryption time Vs Text Size 

 
Figure 14: Decryption time Vs Text Size 

Comparison with Previous Works 

A comparison of the results obtained in this study with those of previous scholars is presented in 

the table below. The comparison focuses on compression time, decompression time, encryption 

time, decryption time, and compression ratio trends. This helps in evaluating the performance of 

Fully Homomorphic Encryption (FHE) in text compression security relative to traditional 

methods. 

Study Compression 

Time Trend 

Decompression 

Time Trend 

Compression 

Ratio Trend 

Encryption 

Time Trend 

Decryption 

Time 

Trend 

This Study Increases 

with text size 

Increases with 

text size 

Decreases 

with text size 

Increases 

significantly 

Increases, 

but lower 
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than 

encryption 

Li et al. 

(2022) 

Comparable 

trend 

Comparable 

trend 

Hybrid 

models 

improve 

efficiency 

Lower 

computational 

overhead than 

pure FHE 

More 

optimized 

for real-

time 

processing 

Sayood 

(2017) 

Similar 

increase 

Similar increase Compression 

ratio follows 

entropy 

trends 

Not covered Not covered 

Ziv & 

Lempel 

(1977) 

Not covered Not covered Compression 

efficiency 

reduces for 

larger texts 

Not covered Not covered 

 

Discussion 

For secure cloud computing, it is essential to investigate the performance of encryption and text 

compression. The findings in data compression literature are in line with the reported increase in 

compression and decompression times with text size (Sayood, 2017). The decrease in the 

compression ratio shows that there is less redundant data to use for compression as text size grows. 

The encryption results show that FHE-based encryption is computationally expensive, particularly 

when the size of the text rises. Despite recent reductions, Fully Homomorphic Encryption is still 

computationally costly, according to similar investigations by Gentry (2009) and Chillotti et al. 

(2020). Even if the decryption periods are shorter than the encryption times, they are still 

problematic for secure real-time applications. According to research by Li et al. (2022), hybrid 

encryption models such as mixing symmetric and asymmetric encryption offer a balance between 

security and computing efficiency when compared to the results of classic cryptographic 

compression strategies. The claim that isolated FHE implementations work best in situations where 

security considerations take precedence over performance issues is supported by this study.  

According to the Compressed Size vs. Original Size data, the compressed size grows along with 

the original text size, albeit more slowly. This is to be expected as the goal of compression 

algorithms is to eliminate redundancy in order to lower file sizes. Because there is less redundancy 

in larger datasets, compression produces a less substantial reduction in percentage for larger text 

sizes than it does for smaller ones. For instance, a 1000 KB file becomes 290 KB (71% reduction) 

when compressed, and a 10 KB file becomes 5 KB (50% reduction). This indicates that although 

compression works, its effectiveness somewhat decreases with increasing file size, which is 

consistent with common data compression patterns seen in entropy-based encoding methods. The 

percentage of the compressed size to the original size is indicated by the Compression Ratio figures 

in the table, which gradually decrease as the text size grows. Smaller files maintain more 

compressible patterns, whereas larger files have less redundancy, according to the compression 

ratio, which ranges from 0.6 for a 1 KB file to 0.29 for a 1000 KB file.  
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This pattern is consistent with well-known compression theories, which state that redundancy-

based compression is less successful on larger datasets since they frequently contain more unique 

content.  The results imply that although compression is helpful for optimizing storage, more 

sophisticated hybrid compression techniques could be needed to achieve greater efficiency for 

larger datasets. The compression ratio trend is consistent with findings from Lempel-Ziv 

compression research (Ziv & Lempel, 1977) and Huffman coding, which show less redundancy in 

larger data sets. This pattern emphasizes the necessity of hybrid architectures that maximize 

encryption and compression for safe cloud computing. Overall, the analysis supports the 

anticipated patterns in encryption and text compression performance. FHE is still a promising 

technology for secure cloud applications, but without more optimization, its computational 

overhead renders it less practical for real-time processing. To reduce performance bottlenecks, 

future research should investigate hybrid strategies, parallelized implementations, and enhanced 

FHE techniques. 

Major Findings: 

1. Compression Efficiency Declines with Text Size: Larger text sizes exhibit lower 

redundancy, resulting in reduced compression ratios (e.g., 0.6 for 1 KB vs. 0.29 for 1000 

KB). 

2. FHE Computational Overhead: FHE-based encryption and decryption incur significant 

computational costs, making it less viable for real-time applications. 

3. Hybrid Encryption Models: Combining symmetric and asymmetric encryption offers a 

better balance between security and computational efficiency compared to standalone 

FHE. 

4. Compression Ratio Trends: Compression ratios decrease as text size increases, aligning 

with entropy-based encoding principles and prior studies on Huffman coding and 

Lempel-Ziv compression. 

5. Need for Advanced Optimization: Future research should focus on improving FHE 

schemes, parallelized implementations, and hybrid approaches to mitigate performance 

bottlenecks in secure cloud computing. 

Conclusion 

The integration of FHE into a secure cloud-based data compression and recovery system was 

effectively proven by the study. The findings underline the difficulties of utilizing FHE in real-

time systems by validating the trade-off between security and computing performance. Despite the 

system's successful encryption and data compression, FHE's high computational cost continues to 

be a barrier. Additional research should concentrate on optimizing FHE through parallel 

processing, hybrid encryption, and lightweight cryptographic algorithms for greater efficiency in 

cloud computing environments in order to increase real-world application. 
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